If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8^2+b^2=15^2
We move all terms to the left:
8^2+b^2-(15^2)=0
We add all the numbers together, and all the variables
b^2-161=0
a = 1; b = 0; c = -161;
Δ = b2-4ac
Δ = 02-4·1·(-161)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{161}}{2*1}=\frac{0-2\sqrt{161}}{2} =-\frac{2\sqrt{161}}{2} =-\sqrt{161} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{161}}{2*1}=\frac{0+2\sqrt{161}}{2} =\frac{2\sqrt{161}}{2} =\sqrt{161} $
| 5-5x+4=-16 | | X^2+(x+4)^2=58 | | d=32 | | x−1=2(3x+7) | | q–1=2 | | 4(x−3)=4 | | -6x+7=3(2x-3 | | 12g=12(2g-1)+11 | | 11-3c=-4 | | x+4(x-7)=12+8x-4 | | 5(8+7)=5(x+5)7 | | 15k-62=2(3k+5) | | 0.2n+3=9 | | -4.3=0.5n= | | 65-3.6n=-43 | | 3x1/5=0 | | 3u+11=50 | | -16/9=4y | | 7x-6+3x+2=8x+11 | | 15k-62/2-5=3k | | 11-3/4n=1 | | x-1.87x=13.92= | | 2/5n+100=8700 | | -5y/8=35 | | 1/2(3-3y)=2(9-y)-1 | | 2/7=6/2x+4 | | 2(4x+3)=-3(4x-5) | | =45−3x-12 | | 1/7n-5=90 | | X+X+3=y×4=52 | | (78-x)=5x | | -4=-2/3v |